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Abstract. Adiabatic pumping of electrons induced by surface acoustic waves (SAWs) in a ballistic quasi-1D
quantum channel is considered using an exactly solvable tight-binding model for non-interacting electrons.
The single-electron degrees of freedom, responsible for acoustoelectric current quantization, are related
to the transmission resonances. We study the influence of experimentally controllable parameters (SAW
power, gate voltage, source-drain bias, amplitude and phase of a secondary SAW beam) on the plateau-like
structure of the acoustoelectric current. The results are consistent with existing experimental observations.

PACS. 73.23.-b Electronic transport in mesoscopic systems – 73.50.Rb Acoustoelectric
and magnetoacoustic effects – 73.40.Ei Rectification

1 Introduction

Single electron transport through low-dimensional meso-
scopic structures, driven by surface acoustic waves
(SAWs), is a subject of active experimental [1–9] and
theoretical [10–18] research, with potential applications
in metrology [19] and new computation technologies [20].
In a typical experimental setup, a quasi-one dimensional
ballistic channel is defined in a AlGaAs/GaAs heterostruc-
ture and a SAW is launched in the longitudinal direc-
tion at a frequency ω/2π of several GHz. Under appropri-
ate conditions, the acoustoelectric dc current I exhibits
a staircase plateau-like structure as function of the gate
voltage (which controls the depletion of the channel) and
of the SAW power. At the plateaus, the current saturates
at quantized values I = e(ω/2π)m, corresponding to the
transfer of an integer number m of electrons per each pe-
riod of the SAW (here e is the electron charge). The first
plateau is the most flat and robust to changes in the con-
trol parameters; the higher plateaus become less and less
pronounced as the plateau numberm is increased. In addi-
tion, the effect of factors such as source-drain bias [1,2,5],
temperature [1,7], gate geometry [4], a secondary SAW
beam [2,4], and perpendicular magnetic field [5] on the
staircase structure and the quality of the first plateau have
been studied experimentally.

In the experiment, the plateaus are observed below
the conductance pinch-off, when electrons in the source
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and in the drain reservoirs are separated by a potential
barrier. This observation forms the basis for the simple
qualitative explanation of the quantized transport which
has been proposed in the first experimental report [1] and
further refined in references [4,10,11]. They argue that
when the wavelength λ of the SAW is comparable with
the size of the depleted region L (as it is in the exper-
iments [1,2,4]), a single potential well forms on top of
the static barrier. This potential well then acts as a dy-
namic quantum dot, which can hold an integer number
of electrons due to the Coulomb blockade effect. The cap-
tured electrons are transferred from one side of the bar-
rier to the other, with possible quantization errors due
to back-tunnelling [10,11]. In the above description, the
formation of the quantum dot and the transport of the lo-
calized electrons are treated separately. Particular effects
which have been studied theoretically within this picture
are the non-adiabatic effects at the quantum dot’s forma-
tion stage [12], and the classical dynamics of the already
confined interacting electrons [15].

A different perspective on the problem has been sug-
gested in references [16,21]. This approach relates the
acoustoelectric transport to adiabatic quantum pumping
of non-interacting electrons. The external potential, gener-
ated by the SAWs and by the control gates, is viewed as a
perturbation acting on a coherent quantum wire [22]. The
resulting “staircase” structure of the acoustoelectric cur-
rent and its dependence on model parameters within this
approach have been studied in references [16,18], using
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the adiabatic approximation in conjunction with an ex-
actly solvable one-dimensional (1D) tight-binding model.
This theory yields a crossover from a non-quantized acous-
toelectric transport to the quantized limit as the SAW
power and/or the static barrier height are increased. Al-
though this picture requires the Coulomb interaction in
order to set the energy scale of the problem [11,12,15],
the main qualitative features of the experiment can be re-
produced within a model of non-interacting spinless elec-
trons [13,16].

In this paper we extend the results of reference [16].
The mechanism of quantized transport is elucidated by us-
ing a resonance approximation for adiabatic pumping [23].
Both current quantization and transmission resonances
are determined by the quasi-bound states of the electrons
captured by a moving potential well. New effects, includ-
ing the influence of a counter propagating SAW, static
potential asymmetry and source-drain bias on the number
and shape of the quantization steps, are considered. We
compare our qualitative conclusions with the published
theoretical and experimental results. In particular, tuning
the amplitude and the phase of a weak secondary SAW
is found to improve the quantization by accordance with
an earlier experimental report [4]. For this effect, we pro-
pose a new quantitative relation between the phase and
the amplitude of the optimal secondary SAW which can
be easily checked using existing experimental setups.

The results are presented as follows. In Section 2, we
describe the model [16] and the algorithms for calculat-
ing the adiabatic current. In Section 3, we explain the
formation of the integer plateaus and make quantitative
analytic estimates by applying the resonance approxima-
tion [23] to the model of reference [16]. Building on these
results we analyze in Section 4 additional factors, not de-
scribed previously, such as reflected SAWs, source-drain
bias and gradual screening of the pumping potential. Fi-
nally, a discussion of our results in the context of related
work is presented in Section 5, together with several con-
clusions.

2 The model

2.1 The Hamiltonian

The choice of an adequate theoretical model for a meso-
scopic wire is a highly non-trivial task even in the absence
of time-dependent potentials. The nanostructures under
study are narrow constrictions in a two-dimensional (2D)
electron gas, formed either by electrostatic gating [2] or
by shallow etching [5]. A realistic modelling of the corre-
sponding 2D potential field requires a self-consistent nu-
merical calculation [10,12], and thus limits the exploration
of the parameter space. Suitable analytic approximations
(e.g., a saddle-point potential [21] or a combination of
Gaussian functions [15]) for the 2D geometry can be used,
but the necessary calculations of the acoustoelectric effect
are still heavily complicated by the lack of any transla-
tional symmetry.

Fig. 1. One-dimensional discrete model for SAW-induced
pumping.

In contrast, 1D models of SAW-induced pump-
ing [10,13,16] do not account for the details of the ex-
perimental geometry but still capture the basic aspects
of quantized transport. The underlying physical assump-
tion is that only electronic states in the lowest transverse
mode of a quantum wave-guide play an active role in the
transport and the inter-mode scattering can be ignored.
The use of this assumption is indirectly supported by two
experimental observations: (1) in the absence of SAWs,
the samples demonstrate conductance quantization which
means that the gradual change in the gate voltage de-
pletes the transversal modes one by one; (2) the relevant
regime for the SAW-induced current quantization is just
below the depletion threshold where the lowest transversal
mode dominates the transport.

In the present paper, the system is described by the
simple 1D Hamiltonian of reference [16]. The Hamilto-
nian is defined on a discrete chain of points (sites) which
represent the nanostructrure and the two ideal semi-
infinite leads connecting its ends to the electronic reser-
voirs (Fig. 1). The external potentials due to the gates
and the SAWs are assumed to be completely screened in
the leads, and act only in the nanostructure.

The leads are characterized by vanishing on-site ener-
gies and nearest-neighbors hopping amplitudes −J . An
electron moving in the lead has the energy E(k) =
−2J cos ka, where k is the wave vector and a is the inter-
site distance. Note that for ka � π/2 the motion is equiv-
alent to that of a free electron with an effective mass
m∗ = �

2/(2Ja2). The dynamics of the electrons inside
the nanostructure is defined by a three-diagonal N × N
Hamiltonian matrix, H0(t), with nearest-neighbors hop-
ping amplitudes −Jd and diagonal on-site energies εn
(n = 1, 2, . . .N is the site number). The connection be-
tween the ideal leads and the perturbed part of the channel
is introduced through a hopping amplitude −Jl (−Jr) be-
tween the left (right) lead and the site 1 (N) of the nanos-
tructure. The resulting full Hamiltonian of the quantum
wire is:

H =
N∑

n=1

εn |n〉 〈n| −
+∞∑

n=−∞
(Jn |n〉 〈n+ 1| + h.c.) , (1)

where Jn =



Jl, n = 0,
Jd, 1 ≤ n < N,
Jr, n = N,
J, otherwise.

For the special case of Jn = const and εn = 0, equation (1)
describes an ideal 1D wire.
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The effect of the static gate and the SAW-induced
piezoelectric potential is modeled through the space and
time dependence of the on-site energies εn(t). The simplest
case is that of a rectangular barrier and a single running
wave, as introduced in reference [16],

εn(t) = −Vg + P cos (ωt− qxn) . (2)

Here, Vg is the gate voltage (in energy units), q is the
wave-vector of the SAW, and P is the amplitude of the
piezoelectric potential, induced by a SAW running from
left to right (for q > 0). The origin of the spatial coordi-
nate xn = (n− 1)a−L/2 is chosen to be at the middle of
the channel, where L = (N − 1)a is an effective channel
length.

It is important to emphasize that equation (1) is
not a truly microscopic tight-binding description of the
underlying crystalline lattice, but rather a discretized
version of a continuous 1D Hamiltonian H(x, t) =
−(�2/2m∗)(∂2/∂x2)+V (x, t). The matrix elements Jd and
J characterize the kinetic energy of the electrons, but not
the physical tunneling between spatially localized states.
Therefore, it is sufficient to include the time-dependence
only in the diagonal part of H through εn(t) = V (xn, t)
and keep the hopping amplitudes constant1. In view of
this, we expect only the results determined by the lower
part of the tight-binding band to have direct physical im-
plications.

The physical interpretation of Jl and Jr is more sub-
tle, since they characterize the (abrupt) boundary between
the perturbed and the ideal parts of the channel. In prin-
ciple, two physically different situations are possible. One
is the case of Jl = Jr = Jd = J , which means continu-
ity of the effective mass and corresponds to the absence
of any static potential barriers on the boundary between
the leads and the nanostructure. The other possibility is
to consider a closed structure, |Jl;r| � |J |, |Jd|, where
Jl;r have the meaning of physical tunneling amplitudes.
In this case, a SAW-induced time-dependence of Jl;r(t) is
expected to play a significant role as in turnstile pumping
mechanism [22,23].

In the present work, we consider time-independent
hopping amplitudes only and find that the ratios
|J2

l;r/(JJd)| have little influence on the results (see
Sect. 3.1 below). Therefore, the simplest assumption,
|JJd| = |Jl|2 = |Jr|2, will be used in the exact numerical
calculations. The other option, of large and SAW-sensitive
tunnelling barriers at the channel exits, has been recently
considered in experiment [9,24] and constitutes an inter-
esting topic for a separate study.

2.2 The acoustoelectric current

The discrete nature of our model Hamiltonian allows for
an exact calculation of the adiabatic instantaneous cur-

1 One could consider, in principle, a SAW-induced time-
dependence of Jn(t) coming from some microscopic model. The
argumentation of the resonance approximation would still be
applicable (Sect. 3.1), but certain specific results may depend
on the details of the instantaneous spectrum of H0(t).

rent for any strength of the pumping potential. Formally,
the adiabatic approximation is justified when the excita-
tion energy �ω (10µeV for a SAW of several GHz fre-
quency) is less than any other scale governing the energy
dependence of the scattering states [21,22]. In practice,
the validity regime of the adiabatic approximation in open
systems is a rather complicated subject [22,25]. We note
that the experimentally observed acoustoelectric current
is proportional to ω [2,6], which is a property of an adia-
batic current. The next order corrections to the adiabatic
current can be derived analytically [22,18]. However, the
actual calculation for our Hamiltonian is rather involved
and is beyond the scope of the present paper. In view of
this, we restrict the following discussion to the adiabatic
case.

The adiabatically-pumped current flowing between
two reservoirs with equal electrochemical potentials
µl = µr, is usually calculated using the Brouwer for-
mula [26,27]. We use an equivalent formalism, developed
in reference [22], which also includes the effects of a finite
bias eVSD ≡ µl−µr �= 0. The total instantaneous current,
Iα(t), of spinless electrons from the lead α = l, r into the
nanostructure consists of two parts, Iα(t) = Ipump

α + Ibias
α .

These two parts can be conveniently written down us-
ing the instantaneous scattering states |Ψα(t)〉 (normalized
to a unit flux), the instantaneous transmission coefficient
T (t) and the overall scattering phase θ(t) of the nanos-
tructure [22]

Ipump
α =

e

4π�

∫
dE 〈Ψα(t)| Ḣ |Ψα(t)〉 ∂(fl + fr)

∂E
, (3)

Ibias
α =

e

2π�

∫
dE

{
(fl − fr) T +

�

2
∂(fl − fr)

∂E
T θ̇

}
.

(4)

Here fα(E) = 1/[1 + eβ(E−µα)] is the Fermi distribution
with β = 1/kBT (T is the temperature). If the system is
unbiased, then Ibias

α = 0 and equation (3) can be shown
to reproduce [22,23] the Brouwer formula [26,27]. On the
other extreme, if no pumping potential is applied, Ipump

α =
0 and equation (4) leads to the Landauer formula [28] for
the conductance, G = (e2/h)T .

For most of the discussion we assume both the bias
voltage VSD and the temperature T to be zero. In this
case only electrons at the Fermi energy µl = µr = EF

participate in the scattering. Solving the scattering prob-
lem for the potential (2) and using equation (3) yields the
charge Q pumped over one period (the average dc compo-
nent of the current) [16],

Q =
∫ 2π/ω

0

dt Ipump
l (t) =

eJ̃l sin ka
π

∫ 2π/ω

0

dt
N∑

n=1

ε̇n|gn,1|2 ,

(5)[
g−1

]
n,n′ = [EI −H0]n,n′ + δn,n′ eika

(
δn,1J̃l + δn,N J̃r

)
,

(6)
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where J̃l;r ≡ J2
l;r/J and k is the Fermi wavenumber, EF ≡

E(k). The instantaneous transmission is

T (t) = 4|gN,1|2 J̃lJ̃r sin2 ka . (7)

The integrand in equation (5) is a meromorphic func-
tion of z = exp(iωt), with 2N pairs of complex conjugate
poles. Therefore, the integration of equation (5) may be
carried out exactly, once the positions of the poles are
determined by solving numerically the corresponding al-
gebraic equation of degree 2N .

2.3 Resonance approximation

The second term on the r.h.s. of equation (6) is the self-
energy addition to the Green’s function of the isolated
channel, due to the coupling to the external leads. When
the latter is sufficiently small, the total pumped charge can
be divided into contributions from separate single-particle
levels of H0. A systematic development of this approach
leads to the resonance approximation for pumping, which
is discussed in detail in reference [23]. Here we summarize
the resulting algorithm for calculating the pumped charge
in the this approximation.

1. Solve the instantaneous eigenvalue problem∑
n′ [H0]n,n′ ψ

(m)
n′ = Em ψ

(m)
n and obtain the ap-

proximate resonance energies Em(t).
2. Calculate the time-dependent decay widths of each res-

onance into each lead,{
Γ

(m)
l , Γ (m)

r

}
=

{
J̃l

∣∣ψ(m)
1

∣∣2, J̃r

∣∣ψ(m)
N

∣∣2} sin ka . (8)

3. For each m, find all such times tm,j at which the res-
onance condition Em(tm,j) = EF is satisfied.

4. At each resonance time t = tm,j , compute the partial
charge transferred between the left lead and the mth
quasibound state in the channel,

∆Qm,j =
e Γ

(m)
l

Γ
(m)
l + Γ

(m)
r

∣∣∣∣∣
t=tm,j

. (9)

5. Calculate the total charge pumped from left to right2:

Qres = −
∑
m,j

∆Qm,jsgnĖm(tm,j) , (10)

or set Qres = 0 if no resonances were found in step 3.

The algorithm has a direct physical interpretation [23].
Whenever the energy Em of a (quasi-)bound state crosses
the Fermi level EF , an electron either occupies (“loading”)
or leaves (“unloading”) this state. The corresponding unit
pulse of current is distributed between the channels pro-
portionally to the Γ (m)

α ’s. Except for specifically designed
2 Due to charge conservation, it is sufficient to calculate the

charge transfer from the left reservoir. Therefore, the channel
index α is fixed to α = l in equations (9, 10).

Hamiltonians H0(t), Qres → Q in the limit of vanishing
couplings Γ (m)

α → 0.
The resonance approximation fails when either (i) the

total width of a particular resonance is larger than the
distance to the next energy level; or (ii) the partial de-
cay widths Γ (m)

l;r change considerably while the system is
at resonance [23]. As discussed in detail in the following
section, these restrictions become significant for the non-
quantized transport, but have little influence on the shape
of the current quantization steps. In all the cases in which
the resonance approximation is inadequate, we rely on the
results of an exact calculation.

3 Formation of quantization steps

3.1 Application of the resonance approximation

The results of a full calculation (as outlined in Sect. 2.2)
show [16] that the pumped charge, Q, follows a staircase-
type dependence on the gate voltage, Vg, and/or on the
SAW amplitude, P , for a wide range of the model param-
eters. This ‘quantization’ can be related to the structure
of the transmission resonances [23,29,30]. We first estab-
lish this relation quantitatively and then use it to analyze
various aspects of the model.

The calculation of the pumping curve can be visualized
using a diagram like the one shown in Figure 2. First, one
plots the instantaneous eigenvalues Em for Vg = 0 as func-
tion of time ωt (curves in the right panel of Fig. 2). The
small circles on the top of each curve show the time evolu-
tion of the corresponding partial charge∆Q: the diameter
of each circle is proportional to |∆Q/e| < 1; shading is de-
termined by the sign — black (•) for Ėm < 0 (“loading”)
and white (◦) for Ėm > 0 (“unloading”). Once the eigen-
value diagram is constructed, the set of resonances for
each particular value Vg of the gate voltage is determined
graphically: a horizontal line with ordinateEF +Vg crosses
the eigenvalue curves in the right panel at the points where
the resonance equation Vg +Em(Vg = 0) = EF is satisfied
(step 3 of the algorithm). The abscissas of the crossing
points determine the resonance times tm,j to be used in
equations (9, 10). (The dashed horizontal lines in Figure 2
mark the extrema of the eigenvalue curves, and thus cor-
respond to particular values of Vg at which the number
of resonances changes.) Finally, the total pumped charge,
Qres(Vg), is calculated by summing up the contributions
to equation (10): the magnitude and the sign of each term
is given by the small circle at the respective crossing point
in the right panel. The resulting pumping curve Qres(Vg)
is plotted in the left panel of Figure 2.

Several aspects of the model are illustrated by the con-
struction in Figure 2. One can see that the quantization
of the pumped charge is caused by electronic (hole) states
with the lowest (highest) energy. When resonances occur,
(namely, at {tm,j}), these states are localized near one
of the channel exits — either Γl/Γr � 1 or Γl/Γr 	 1
— and therefore transfer almost integer charges [Eq. (9)].
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Fig. 2. (Color online) Construction of the pumping curve Qres(Vg) in the resonance approximation. Right panel: instantaneous
energy levels of H0 at Vg = 0 as function of time. Left panel: pumped charge Qres (in units of e) as function of gate voltage.
Horizontal dashed lines show the correspondence between sharp features in the pumping curve (left), and the change in the
number of energy levels at resonance (right); see text for a detailed discussion. All energies are given in units of Jd; the parameters
of the potential are: P = 8Jd, λ = 4L, N = 10.

Fig. 3. (Color online) Pumped charge versus gate voltage for different external parameters: J̃ = 0.16Jd (left panel), J̃ = 1Jd

(right panel), calculated in the resonance approximation (a) and exactly for the bottom of the band (b) and at the band
center (c). Parameters of the potential are the same as in Figure 2.

The number of steps counts the number of localized states
involved.

The exact integration [Eq. (5)] takes into account the
“external” parameters of the model, ka, J̃l and J̃r, which
are ignored in the resonance approximation. In the fol-
lowing, we will consider only symmetric couplings, J̃l =
J̃r ≡ J̃ . We have calculated the exact pumped charge,
Q(Vg), for several values of the “external” parameters,
but with the same pumping potential as in Figure 2. Rep-
resentative results are shown in Figure 3 along with the
approximate Qres(Vg) from Figure 2 [thin (blue) line]. For
sufficiently small J̃ , the exactly calculated curves contain
integer steps and sharp, non-quantized features at large
values of Vg (e.g., the spikes marked by small arrows in
Fig. 3). The first steps are robust and do not change their
positions as J̃ and ka are varied (except for a trivial shift
of EF ). The top of the pumping curve and the spikes are
more vulnerable: as J̃ is increased, the upper steps and the
sharp features shift and become rounded. Narrow spikes

disappear for J̃ = Jd and ka close to the center of the
band [see curve (c) in the right panel of Fig. 3].

The resonance approximation reproduces all the de-
tails of the exact calculation for J̃ � Jd, because the
resonance widths in equation (8) vanish in the limit of
J̃ → 0. The non-generic sharp features are determined by
the surroundings of level anti-crossings (see Fig. 2), where
the corresponding level spacings are tiny. As we expect
form the validity condition (i) in Section 2.3, the finite
resonance width effects are most important in this region.
Indeed, the discrepancies between the exact and the ap-
proximate curves in Figure 3 are well correlated with the
fact that the shifts and the widths of the resonance levels
for a tight-binding model are proportional to J̃ cos ka and
J̃ sin ka, respectively [Eq. (8)].

We have made a similar comparison between the ex-
act integration and the resonance approximation for sev-
eral sets of “internal” parameters, P/Jd, λ/L, and N . The
most important conclusion is that the stair-case structure
of the pumping curve can be reliably estimated using the
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resonance approximation. Hence, we will utilize this useful
technique in the following as a source for various analytic
estimates that will be further checked versus exact calcu-
lations.

3.2 SAW parameters and the number of quantization
steps

For the lowest part of the spectrum (which is relevant
for the quantized transport), the on-site energies (2) can
be treated as a potential function of a continuous spatial
coordinate xn. For λ > L, only one minimum of this po-
tential can be located inside the SAW-affected part of the
channel. The position of this minimum x0(t) = (t − t0)v
moves with the sound velocity v = ω/q and passes through
the middle of the channel at time t0 = ω−1(π + 2π ×
integer). Electronic states localized in this moving poten-
tial well can be approximated by simple harmonic oscil-
lator wave-functions [16]. The corresponding energy spec-
trum is Em = −P − 2Jd +∆(m− 1/2), m = 1, 2, . . ., with
a constant spacing ∆/Jd = qa

√
2P/Jd. The lowest energy

wave-function is approximately a Gaussian,

ψ(1)
n (t) =

(
ξ2 π/2

)−1/4
exp{−[xn − x0(t)]2/ξ2} , (11)

with ξ ≡ 2a
√
Jd/∆. The localization length of the higher

levels can be estimated as ξm = ξ
√
m.

The harmonic approximation is valid as long as the
wave-packet is driven adiabatically by a parabolic well and
is not perturbed neither by the ends of the channel, nor
by the “hills” of the cosine-shaped potential profile. This
implies the validity condition

ξm � min[L/2 − |x0(t)|, λ/2] . (12)

In order to illustrate the above reasoning, we draw the
attention of the reader to a set of constant and equidis-
tant energy levels Em(t) in the right panel of Figure 2,
in the vicinity of ωt = π. The lowest energy level fol-
lows the harmonic approximation as long as the parabolic
minimum is located inside the channel, that is for the
fraction λ/L = 1/4 of the full period. Higher energy
levels remain constant for shorter times, since their re-
spective localization lengths entering equation (12) are
longer. The harmonic structure of the energy levels trans-
lates into a sequence of equidistant steps in the pumping
curve, Q(Vg), with the same energy spacing ∆, as shown
in the left panel of Figure 2. At each value of gate voltage,
V

(m)
g = Em − EF , a new pair of resonances and another

step in the pumping curve emerge. The plateaus are rather
flat because the resonant states at the loading (unloading)
moments are well localized at the entrance (exit) of the
channel.

The number of quantization steps, Nsteps, is limited by
two competing mechanisms. The first limit is set by the
number, N1, of localized states that can be transferred
below the Fermi energy. If xn can be considered as con-
tinuous, the localization condition is roughly the same as

Fig. 4. Instantaneous eigenenergies Em (in units of Jd) for
Vg = 0, N = 10 and (a) P = 8Jd, λ = 4L; (b) P = 32Jd,
λ = 4L; (c) P = 2Jd, λ = 4L; and (d) P = 2Jd, λ = 2L.
Insets: the pumped charge Qres as function of the scaled gate
voltage Vg +EF ; the distance between the ticks on the ordinate
axis is equal to a unit charge.

the validity condition (12) for the harmonic approxima-
tion. For L < λ it follows from ξN1 = L/2 that N1 =
L2∆/(16Jd a

2) = (π
√

2/8)N(L/λ)
√
P/Jd. On the other

hand, for large enough P the discreteness of the tight-
binding grid cannot be neglected. For a rough estimate, we
assume that the continuous approximation breaks down if
it yields an average distance ξm/m between the succes-
sive zeros of the mth wave-function, which is smaller than
the inter-site spacing a. This happens for m > N2, where
N2 = N2/(4N1). Putting the two limits together we es-
timate the number of quantization steps, Nsteps, as the
integer closest to min(N1, N2). By adjusting the parame-
ters one can obtain at best a sequence of N/2 steps. The
optimal parameters L = 0.3λ, N = 6, P = 8Jd of refer-
ence [16] indeed yield Nsteps ≈ N1 = 2.83 ≈ N2 ≈ N/2.
The decrease in the number of steps with increasing L/λ
reported in reference [16] corresponds to the tight-binding
limited regime Nsteps ≈ N2 ∝ λ/L.

Despite a certain inherent uncertainty of our esti-
mates, they prove useful for understanding the effect of
changing the amplitude and the wavelength of the SAW
(Fig. 4). In Figure 4a, the number of steps is close to
optimal, N/2 = 5, and is limited by the localization cri-
terion Nsteps ≈ N1 = 3.9. Increasing P by a factor of
4 (Fig. 4b) reduces the number of steps due to discrete
lattice effects: Nsteps ≈ N2 = 3.2. One can clearly see
that for higher energy levels (close to the band center) the
tight-binding coupling Jd is no longer relevant: Em(t) with
m > N2 follow a sequence of cosine curves P cos(ωt+ δφ)
with equal phase differences qa. These curves correspond
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to the individual on-site energies εn(t). In this regime the
hopping amplitude Jd leads only to tiny anti-crossings be-
tween the energy levels, which in turn give rise to the sharp
peak-like structure in the pumping curve. The effects of
the tight-binding approximation become less pronounced
as P is reduced below the optimum (Fig. 4c). In this case
Nsteps ≈ N1 = 1.96 and the peaks in the pumping curve
are suppressed. The missing steps can be brought back by
shortening the wave-length, as shown in Figure 4d. The es-
timated number of steps is now the same as in the original
case (a). However, the non-parabolic shape of the poten-
tial minimum is more pronounced. Note that in case (d)
the flat region for E0(t) extends over half of the period,
since λ = 2L.

Note that in the physically relevant parameter regime,
the tight-binding effects should not dominate. Therefore,
the condition N1 < N2 ⇒ (L/λ)

√
P/Jd � 1 is obeyed in

the following calculations.

4 Perturbations of the pumping potential

The pumping potential in equation (2) is of a rather high
symmetry. Small perturbations – such as a static impu-
rity or a reflected SAW — can change the shape and the
position of the current quantization steps. In order to ex-
plore these effects, we add to εn(t) a smooth function of
xn and t,

εn(t) = −Vg + P cos(ωt− qxn) + U(xn, t) . (13)

Similarly to the situation discussed above, the structure
of the relevant energy levels can be analyzed using the
harmonic approximation, provided that U(xn, t) changes
slowly and the travelling wave-packet is well localized:
ξm ∂U(x, t)/∂x � ∆. The first-order approximation for
the instantaneous energy,

Em(t) = −P − 2Jd +∆(m− 1/2) + U(x0(t), t) , (14)

is valid for |x0(t)| � L
2 − ξm (we consider the case λ > L).

Note that x0(t) is the position of the potential well min-
imum, and x0(t0) = 0 (the middle of the channel). Now
even within the harmonic approximation Em(t) is explic-
itly time-dependent and this time dependence maps onto
the shape of the current quantization steps. To make a
quantitative statement we note that the instantaneous
wave-function remains unperturbed in first-order; |ψN (t)|
becomes greater than |ψ1(t)| at t = t0. At this point, the
partial decay widths are equal, Γ (m)

l = Γ
(m)
r , and the reso-

nance approximation yields a half-integer pumped charge.
Therefore, the transition between the consecutive plateaus
takes place at the gate voltages V (m)

g = Em(t0) − EF . In
particular, half of the first step in the pumping curve is
reached at the gate voltage

V1/2 ≡ V (1)
g = V0 + U(0, t0) , (15)

such that Q(V1/2) = e/2. Here V0 = −EF −P −2Jd+∆/2
is the threshold voltage for the first step in the absence of
perturbations.

The resonance moment associated with the left-right
transition at Vg = V1/2 is well defined, since the energy
levels Em(t) are in general no longer constant in the vicin-
ity of t = t0. Therefore, the slope of the first quantization
step can be estimated from the resonance approximation.
The value of the total pumped charge at Vg = V1/2 + δV
is dominated by the unloading resonance at t = t0 + δt,
where δV = Ė1(t0)δt. The other resonances contribute
charges exponentially close to an integer; for simplicity, let
us consider only one loading through the left lead (which
gives ∆Q1 ≈ e = const.) before unloading at t0. The con-
tribution of the latter, ∆Q2(t), can be calculated using
the Gaussian wave-function (11) in equations (8, 9). The
resulting total pumped charge ∆Q1 +∆Q2 is

Q ≈ e− e|ψ(1)
1 (t)|2

|ψ(1)
1 (t)|2 + |ψ(1)

N (t)|2
=
e

2

(
1 + tanh

Lvδt

ξ2

)
.

(16)

We define the steepness of the first step, S, as

S ≡ dQ

dVg

∣∣∣
Vg=V1/2

≈ eLv

ξ2

[∣∣∣∣v ∂U∂x +
∂U

∂t

∣∣∣∣
−1

]
t=t0
x=0

. (17)

The pre-factor in equation (17) is the least accurate, since
the applicability of equation (11) at the ends of the chan-
nel is marginal. Taking the absolute value in equation (17)
makes the result valid for both signs of Ė1 at t = t0.
Our derivation is not justified for perturbations that yield
small values of the denominator in equation (17). Then,
the steepness remains bounded due to the finite resonance
width.

The quantization accuracy can be estimated along sim-
ilar lines. However, the results are less transparent since
the energy levels involved are beyond the simple harmonic
approximation.

4.1 Sensitivity to the second SAW

For a particular example of a perturbation which mimics
the experimental situation, consider the following poten-
tial

U(xn, t) = P− cos (ωt+ qxn + ϕ) + b xn/L . (18)

Here P− and ϕ are the amplitude and the phase of a sec-
ond SAW, propagating in the negative direction. It can be
generated either due to reflections of the main beam [2] or
by a second transducer [4]. We also include a simple static
perturbation [proportional to b in Eq. (18)] which breaks
the left-right symmetry of the channel in the absence of
the SAW. The estimates in equations (15, 17) become

V1/2 = V0 − P− cosϕ , (19)

S =
4N1e

|b+ 2qLP− sinϕ| . (20)

[We have used the relation N1 = L2/(4ξ2) in Eq. (20).]
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Fig. 5. Interference of two counter-propagating SAWs with an
amplitude ratio P−/P = 0.2. The phase difference ϕ is changed
from 0 to 7π/6, in steps of π/6, as indicated. Solid curves
show the pumped charge (in units of e) versus the gate voltage
(in units of Jd), the dotted lines mark the best quantization
conditions achieved at ϕ = 0 and ϕ = π. For ϕ ∈ [π, 2π] the
pumping curves repeat the same sequence in reverse order (not
shown). The parameters used are: P = 8Jd, λ = 4L, N = 10.
Curves are computed using the resonance approximation.

First we consider the case of a reflected wave only
(b = 0). A series of pumping curves for different values
of the phase difference is presented in Figure 5. As can be
seen from equation (19), the threshold voltage changes pe-
riodically in ϕ, reaching extremal values at ϕ = 0 and π.
Between these special values of ϕ, the staircase structure
is more smooth, and the steps are more symmetric: the
convex and the concave parts of a step become almost
congruent. The pumping curves are identical for ±ϕ due
to the symmetry of the potential (13) with b = 0.

For a quantitative characterization of the second SAW
effect we have determined numerically the positions and
the slope of the pumping curves at Q = e/2 without any
approximations in equation (5). The results are shown in
Figure 6. Tuning the phase difference ϕ for a fixed ampli-
tude ratio P−/P to the values at which the r.h.s. of equa-
tion (20) diverges enhances the steepness of the first step
by orders of magnitude. The sharpest steps are achieved
at the extrema of the threshold voltage V1/2, as shown in
the inset in Figure 6 and qualitatively in Figure 5.

The above example shows that a symmetric pump-
ing potential is favorable for quantization: the steepest
plateaus are achieved without a secondary SAW or with
P− �= 0 and ϕ = 0, π, when the total SAW poten-
tial V (xn, t) ≡ εn(t) is invariant under xn → −xn,
t→ −t+ const.

Further reduction of symmetry is achieved by choos-
ing b �= 0 and P− �= 0. Here two regimes are possible. For
small b, the situation is similar to the previous case: the
steepness is greatly enhanced at two values of ϕ between 0
and 2π, when the denominator in equation (20) vanishes.
In contrast, for b > 2qLP− it is the static asymmetry of
the channel that determines the slope of the steps, which
now has only one wide maximum as function of ϕ. This

Fig. 6. (Color online) The steepness of the first step S =
dQ/dVg at Q = e(1/2), in units of e J−1

d for P−/P =
0.05, 0.1, 0.2 as function of the phase difference ϕ. The curve
for P−/P = 0.2 corresponds to the data presented in Figure 5.
Inset: threshold voltage V1/2(ϕ) − V0 versus ϕ, in units of Jd.
Curves are computed exactly from equation (5). Thick dashed
(blue) lines show analytic estimates, given by equations (19–20)
for the smallest amplitude ratio P−/P = 0.05; the pre-factor
N1 in equation (20) has been treated as a free fitting param-
eter. The parameters used are: P = 8Jd, λ = 4L, N = 10,
ka = π/5, J̃ = 1.

Fig. 7. (Color online) The steepness of the first step for P =
2Jd, λ = 2L, N = 10, b = 1Jd, as function of P−/P and ϕ.
The dashed (blue) line marks the combinations of amplitude
and phase at which the first order estimate [Eq. (20)] diverges.
Note the logarithmic grey-coding scale. The steepness without
the perturbation (P− = b = 0) is S = 613 e/Jd.

behavior is illustrated in Figure 7, which shows the slope
of the first step as a function of the second SAW ampli-
tude and phase. The initial steepness at P− = 0, b = 1Jd

is S = 12.2(e/Jd) for the selected model parameters. That
is more than an order of magnitude less than in the un-
perturbed (P− = b = 0) case. Increasing the amplitude of
the second SAW improves the steepness for π � ϕ � 2π
with a single wide maximum at ϕ ≈ 3π/2, in agreement
with equation (20). At P− ≈ b/(2qL) the steepness peaks
sharply, almost reaching the unperturbed value. Further
increase of P− reduces the steepness gradually, which now
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has two maxima in ϕ, approaching ϕ = π and ϕ = 2π for
large P−, similarly to Figure 6. This example shows that
a weak counter-propagating SAW with properly chosen
amplitude and phase is able to compensate for the static
asymmetry of the pumping potential and significantly im-
proves the sharpness of the current quantization steps.

Available experimental data are consistent with our
conclusions. Periodic oscillations of V1/2 have been ob-
served in experiments with one active SAW transducer
when the frequency of the SAW was varied. The period of
these oscillations was found to match a full 2π phase shift
between the main SAW and a weak wave reflected from the
other (inactive) transducer [2]. Later experiments, with
two active transducers on both sides of the constriction,
have confirmed this scenario, and a sequence of pumping
curves similar to our Figure 5 has been reported [4]. Tun-
ing of the second SAW amplitude and phase has enabled
the authors of reference [4] to improve the flatness of the
first quantization plateau.

The key argument leading to equation (20) concerns
the gate voltage dependence of the potential profile at
the point where capture/release of an electron happens
with equal probabilities from either side of the barrier.
Therefore, the phase and amplitude dependence of the
steepness, S(ϕ, P−), is expected to be insensitive to the
particular choice of the pumping potential, as long as it
leads to a clear sequence of current quantization steps. We
suggest the following generic scenario of the plateau qual-
ity improvement, that can be checked by detailed mea-
surements using existing experimental setups. One should
measure the traces of the first step steepness S(ϕ) as func-
tion of the reflected wave phase ϕ for a set of gradually
increasing secondary beam amplitudes P−. At small am-
plitudes, P− < P−

c , the steepness is expected to have one
broad maximum at some ϕ = ϕ0. As P− is increased, the
value at the maximum, S(ϕ0), increases and at P− = P−

c ,
the maximum splits into two, S(ϕ1) and S(ϕ2), with
ϕ1,2 = ϕ0 ± arccos(P−

c /P
−), as shown in Figure 7 by

the dashed line [for our model calculation ϕ0 = 3π/2 and
P−

c ≈ b/(2qL)].

4.2 Source-drain bias and variations of screening

Experimentally, acoustoelectric current can be studied
along the full crossover, from the depleted to the transmis-
sive state of the quantum wire, by changing the voltage on
the depleting gate. Our discussion so far has been concen-
trated on the quantized single-electron transport, which
is observed in the depleted regime. As the first conduc-
tion channel opens, the shape of the pumping potential
in real space as well as screening effects become increas-
ingly important [21] and the usefulness of our simplified
1D spinless electron model is very limited. Keeping these
limitations in mind, we will choose model parameters that
most closely correspond to a point contact near the deple-
tion threshold, and illustrate the breakdown of quantized
transport.

For P > Jd = J̃ , the tight-binding band is significantly
deformed (see Fig. 4), therefore we choose a relatively

small SAW amplitude P = 0.5Jd, but a large number
of sites N = 24 to maintain Nsteps > 1 for λ = 2L. The
ratio (L/λ)

√
P/Jd = 0.35 is less than 1 (see Sect. 3.2),

and we expect the discrete approximation to be adequate.
The Fermi wave number ka = π/12 is taken close to the
band bottom.

Consider first the situation before the SAW is applied
(P = 0). The zero-bias dc conductance of the channel is
determined by the transmission coefficient T (Landauer
formula, see Sect. 2.2). There is a potential barrier be-
tween the left and the right reservoirs for −Vg > 0, there-
fore the value of Vg + EF = −2Jd cos ka ≈ −2Jd is
expected to be the borderline between transmissive and
blocked states of our channel. This corresponds to the
depletion threshold of a true point contact. We plot the
transmission coefficient in the absence of SAW versus gate
voltage, T (Vg), in Figure 8a with a thin (blue) line. For
Vg < 0, the transmission is exponentially blocked by a
rectangular barrier of height ≈ −Vg and length L, while
above the depletion threshold a Fabry-Perot-like pattern
of high transmission is observed due to multiple reflections
at the sharp ends of the constriction.

At a non-zero SAW amplitude, the transmission co-
efficient T (t) becomes time-dependent and the adiabatic
formula [Eq. (4)] should be used to relate it to the con-
ductance. In the linear response regime, the second term
in the curly brackets in equation (4) is proportional to
∂2f/∂E2 and can be neglected [22]. This results in a gen-
eralized Landauer formula [22], G = (e2/h) Tav, where
Tav ≡ (ω/2π)

∫ 2π/ω

0 dt T (t) is the time average of the in-
stantaneous transmission coefficient T (t). This quantity is
plotted in Figure 8a with a thick black line. One can see
that switching on the SAW smears the sharp step in the
conductance over the range of ±P around the depletion
threshold. Qualitatively similar smoothing of the conduc-
tance quantization steps due to SAW has been observed
experimentally [1,2].

Figure 8a also shows some additional structure below
the depletion threshold. This structure is correlated with
the pumping curve shown by a thick (red) line in Fig-
ure 8b. Comparing Q(Vg) and Tav(Vg) we see that each
step in the acoustoelectric current is associated with a
peak in the time averaged transmission as indicated by
arrows in Figure 8a (the first two peaks are too small to
be seen on a linear scale). It is easy to explain the origin of
these peaks using the resonance approximation diagram
(see Fig. 2). At gate voltages between the quantization
plateaus the system remains at resonant transmission for a
considerable fraction of the period, therefore Tav becomes
greatly enhanced.

In the presence of both SAW and source-drain bias,
the total charge transfer per period, Qtot ≡

∫ 2π/ω

0
dt Il(t),

becomes
Qtot = Q+ (e2VSD/�ω) Tav (21)

(in the linear response regime). The result is a sum of the
two terms: pure pumping contribution [thick (red) curve
in Fig. 8b]; and the average transmission (thick curve in
Fig. 8a), multiplied by a constant. Equation (21) suggests
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Fig. 8. (Color online) Crossover between the depleted and open regimes of the conduction channel for N = 24, ka = π/12,
J̃ = Jd. (a) Time-averaged transmission coefficient Tav in the absence [thin (blue) line] and presence (thick black line) of a SAW
with P = 0.5Jd, λ = 2L. (b) The pumped charge Q [thick (red) line] and the total charge Qtot (thin black lines) for bias voltages
eVSD/(�ω) changing from −3 to 3 in steps of one. The dashed-dotted line shows Qres at no bias [resonance approximation,
Eq. (10)]. (c, d) The same as in (a, b), but with an exponentially screened pumping potential [Eq. (22)]. A sequence of snap-shots
in panels (a, b) and (c, d) shows the corresponding pumping potential in real space for Vg in the middle of the first plateau;
time increases from top to bottom, ωt ∈ [ωt0 − π/2ω; ωt0 + π/2].

that �ω is a natural unit for the source-drain energy mis-
match eVSD. In the quantized pumping region, the con-
tribution of the bias, Ibias, becomes comparable to that
of pumping, Ipump, if the bias voltage source transports
several electrons per cycle. When Tav is of order one, this
regime is attained for eV equal to several �ω. Thus for a
qualitative picture of the pumping curve in the presence of
bias, we have plotted Qtot for the bias voltage eVSD/�ω
ranging from −3 to 3 by thin black lines in Figure 8b.
The main observation is that the higher is the step num-
ber the more sensitive it is to the bias (as one can already
appreciate form the average transmission curve). Similar
behavior is reported in experimental studies [1,2].

The main results of the above discussion remain
unchanged if a phenomenological screening [13,21] is
introduced:

εn(t) = [−Vg + P cos (ωt− qxn)] exp
(
−x2

n/L
2
s

)
. (22)

We have repeated the previous calculation using the same
values of parameters but modified the pumping poten-
tial (22) with Ls = L/4 = λ/8. The results are shown in
Figures 8c and 8d. The main qualitative difference is the
disappearance of the interference pattern in the transmis-
sion curve both with and without the SAW. The number

of steps is reduced to one (shown separately in Fig. 8d′),
since the effective amplitude of the SAW is decreased by
the screening factor in equation (22). Calculations with
larger values of P produce more steps, along the same
lines as discussed in Section 3.2 for the unscreened poten-
tial (2). We have also checked that the behavior of the first
step steepness S(P−, ϕ) as function of reflected SAW am-
plitude and phase, follows the general scenario suggested
in Section 4.1.

We note that in the above example (Fig. 8) the
resonance approximation still holds below the depletion
threshold, when a moving quantum well is isolated from
the Fermi sea in the leads.

5 Discussion and conclusions

Quantized electronic transport, driven by SAW’s, has been
considered in several recent theoretical studies [10–15,17].
Here we discuss our approach in relation to those works.

Several models [10–12,15] make a distinction between
electrons already localized in a moving potential well (dy-
namic quantum dot) and those belonging to the Fermi
sea. The current is then calculated by considering the
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loss of electrons from the dynamic quantum dot at the
stage of its formation [12,15] and/or its subsequent mo-
tion [10–12,15]. This approach presupposes the formation
of the dynamic quantum dot, but does not require it to be
at thermodynamic equilibrium with the reservoirs at all
times. Moreover, all the quantization error mechanisms
within these models (gradual back-tunneling [10–12],
non-adiabaticity at the formation stage [12] and non-
equilibrium dynamics during the transfer [15]) consider
electrons with energies that can significantly exceed the
Fermi energy in the remote reservoirs.

Our adiabatic quantum calculation [16] differs from
these studies in two significant aspects: (i) The forma-
tion of a dynamic quantum dot is not a necessary con-
dition for the calculation of the acoustoelectric current.
We do identify, however, the localized electronic states
(whenever such states are present) via the resonance ap-
proximation and confirm that they are responsible for the
quantized transport. (ii) In the adiabatic pumping approx-
imation [22], the time-dependent potential never excites
the carrier by a finite amount of energy away from the
Fermi level [25]. Therefore, we never observe quantization
steps when the moving potential well rises above the Fermi
level upon passing through the middle of the channel.

We find the numerical calculations by Maksym [13]
to be the closest to our study. He considers a 1D single-
particle model with a pumping potential similar to our
equation (22). The current at the quantization plateaus
is found to be carried by the lowest energy states of the
local potential minimum, in accordance with our results.

The quantization accuracy in our approach is deter-
mined by two factors which we expect to become exper-
imentally relevant for sufficiently low tunnelling barriers.
The first one is the possibility of both reservoirs to par-
ticipate in the capture/release of an electron. This error
mechanism is covered by the resonance approximation and
leads to simple estimates like our formulas for the first
step steepness discussed in Section 4.1. The second factor
concerns mixing of the localized states with the contin-
uum in the leads, which can give significant width to the
quasi-stationary states in the moving quantum dot. Com-
pared to the predictions of the loading/unloading scenario
(Sect. 2.3), this effect further degrades the flatness of the
quantization (see, e.g., Figs. 3b, 6 and 8d) and eventually
leads to the breakdown of the quantized transport as the
channel opens (Sect. 4.2).

We have not considered explicit Coulomb interactions
between electrons in the depleted part of the channel,
which set the energy scale of the problem. One can make
a naive estimate of the level spacing ∆, which in the con-
tinuous limit is [16] ∆ = �q

√
P/m∗. Using typical experi-

mental values [4] for the SAW amplitude P = 20 meV,
wavelength λ = 1 µm and GaAs bulk effective mass
m∗ = 0.067m0, one gets ∆ = 1 meV, which is an order of
magnitude less that the distance between the quantization
steps observed in experiments [1,2,4]. This discrepancy
can be qualitatively understood on a mean-field level: if
an electron is captured by the moving potential minimum,
its unscreened electric field makes the potential well seen

by the other electrons much shallower, and thus increases
the spacing ∆ between resonances by the amount of the
charging energy [31,32]. Such a picture is also supported
by the numerical calculation of a two-electron problem
by Gumbs and co-workers [11]. It is plausible that the
effective values for the parameters of our model can be
estimated from a self-consistent realistic calculation.

In conclusion, we have considered a simple model
for SAW-driven adiabatic pumping of electrons through
a quasi-1D quantum wire. A stair-case structure of the
acoustoelectric current has been mapped onto the in-
stantaneous energy spectrum of the pumping potential.
Numerical calculations and analytic estimates confirm
the experimentally observed behavior of the acoustoelec-
tric current as function of the SAW amplitude, wave-
length, source-drain bias, and the parameters of a weak
counter-propagating beam. Quantitative measurements of
the plateau quality as a function of the second SAW am-
plitude and phase are proposed to probe the relevance of
our model. The presented single-electron picture captures
all the main features of the quantized transport.

This project was carried out in a center of excellence supported
by the Israel Science Foundation.
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Appl. Phys. Lett. 77, 2601 (2000)

7. J.-T. Janssen, A. Hartland, IEEE Transactions on instru-
mentation and measurement 50, 227 (2001)

8. A.M. Robinson, V.I. Talyanskii, M. Pepper, J.E.
Cunningham, E.H. Linfield, D.A. Ritchie, Phys. Rev. B
65, 045313 (2002)

9. N.E. Fletcher, J. Ebbecke, T.J.B.M. Janssen, F.J. Ahlers,
M. Pepper, H.E. Beere, D.A. Ritchie, Phys. Rev. B 68,
245310 (2003), cond-mat/0308402

10. G.R. Aı̌zin, G. Gumbs, M. Pepper, Phys. Rev. B 58, 10
589 (1998)

11. G. Gumbs, G.R. Aı̌zin, M. Pepper, Phys. Rev. B 60, 13
954 (1999)

12. K. Flensberg, Q. Niu, M. Pustilnik, Phys. Rev. B 60, 16
291 (1999)

13. P.A. Maksym, Phys. Rev. B 61, 4727 (2000)
14. Y.M. Galperin, O. Entin-Wohlman, Y. Levinson, Phys.

Rev. B 63, 153309 (2001)



396 The European Physical Journal B

15. A.M. Robinson, C.H.W. Barnes, Phys. Rev. B 63, 165418
(2001)

16. A. Aharony, O. Entin-Wohlman, Phys. Rev. B 65, 241401
(2002), cond-mat/0111053

17. V.A. Margulis, M.P. Trushin, A.V. Shorokhov, JETP 94,
1160 (2002)

18. O. Entin-Wohlman, A. Aharony, V. Kashcheyevs, J. Phys.
Soc. Jpn 72A, 77 (2003), cond-mat/0201073

19. J.L. Flowers, B.W. Petley, Rep. Prog. Phys. 64, 1191
(2001)

20. C.H.W. Barnes, J.M. Shilton, A.M. Robinson, Phys. Rev.
B 62, 8410 (2000)

21. Y. Levinson, O. Entin-Wohlman, P. Wölfle, Phys. Rev.
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26. M. Büttiker, H. Thomas, A. Prêtre, Z. Phys. B 94, 133
(1994)

27. P.W. Brouwer, Phys. Rev. B 58, 10 135 (1998)
28. R. Landauer, Philosophical Magazine 21, 863 (1970)
29. O. Entin-Wohlman, A. Aharony, Phys. Rev. B 66, 035329

(2002)
30. Y. Levinson, O. Entin-Wohlman, P. Wölfle, Physica A
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